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ABSTRACT

Two methods are presented for the synthesis of analog computer networks
that approximate a random process depending on both time and a position para-
meter., The networks are intended for use in the simulation of random wind dis-
turbances that affect a rocket or other aerospace vehicle in flight. The out-
put of the analog computer network simulates the effect of the prescribed ran-
dom process on the vehicle as its position varies arbitrarily with time. The
two inputs to the analog computer network are a Gaussian white-noise random
process and a function of time characterizing the variable position of the

vehicle,

ii



TABLE OF CONTENTS

Page

TITIIE PAGE . - L] L] . . o L] - - o . L] . . o L ] . o L L 1 4 2 L . L d £l L . i
ABS IRAC T . 9 . [ ] - - . L] . - . - - L ® . £ ] - . - . . . . L ] L - . o Ll ’ i i
LIST OF ILLUSTRATIONS &+ ¢ &4 ¢ ¢ o = o o 2 o o o o o o o « s 2 o ¢ o -1iv
I o INI:[RODUC TION . L] (] ® . . - o . . . . - L] Ll - . L . . L] . . . . l
IT. THE COVARIANCE-EXPANSION SYNTHESIS PROCEDURE v ¢ « o « & o o & 3
2-1. Il'ltI'OdllCtiOIl . . . . . - . . L] . . ] '] . L] L] ] . . . L] . 3

2-2. The Synthesis Proceduye e e 4 s & 4 s 8 4 e & e e e e v 3

2— 3 . An Examp le ¢« s s o & e . » . ¢« o . o e « @ a » o ¢ 0 . lo

11T, THE SPECTRAL~DENSITY SYNTHESIS PROCEDURE .« ¢ ¢ o o o o ¢ o o 16
3-L. TIntroduction o+ v o v v o o o o o & o o o o o o 0 s o 16

3-2., The Synthesis Procedure . . « « « o « o o ¢« o o « o« « o » 16

3- 3 . An E:X-amp le e & e & » e » s 8 e @ e & s & s e s s & T & 20

IV, CONCIUSIONS v v v v v v o o o o« o o o o o o o o o o v o v o oa 2k

BIBLIOGRAPHY v & v v o o o « o o o s o s = o o s o o o « s o o 0 0. 26

This report contains 26 pages.

iii



LIST OF ILLUSTRATIONS
Figure Page

2.1 Mechanization System Derived by the Covariance-Expansion
Synthesis Procedure ., « + . .

e + e © s a & s o & 5 8 9 o o o o a 11

2.2 Mechanization System for the Realization of the Random
Process of the Example in Section 2-3.. o « o o o o o s o o o + o 15

3.1 Mechanization System Derived by the SpectraléDensity
Synthesis Procedure . . . e e e s e s e e e e e s e e a0 19

3.2 Mechanization System for the Realization of the Random
Process of the Example in Section 3=3 ¢ v v ¢ v o o o o « o o o @ 22

iv



I. TNTRODUCTION

In this technical note two methods are presented for the synthesis of
analog computer networks that approximate a random process depending on both
time and a position parameter. The networks are intended for use in the simu-
lation of random wind disturbances that affect a rocket or other aeroépace
vehicle in flight.  Each network produced by either of the synthesis procedures
has two inputs. One input is a Gaussian white-noise process and the second
input is a time function characterizing the position of the moving wvehicle,
The parameter characterizing position may be taken to be altitude in the wind
disturbance application., The output of each network is a time-parameter
Gaussian random process that approximates the instantaneous random disturbance
affecting a rocket or other sensing element as it undergoes an arbitrary posi-
tion variation in time. It is not necessary that the position variation of
the sensing element be specified a priori. Thus, in the wind simuliation
application it is necessary to synthesize only a single nebtwork to represent
the disturbances affecting vehicles having a wide variety of flight trajec-
tories,

It is assumed that the first statistical moment of the time/position-
parameter process being approximated is identically zero and that the second
statistical moment is known. Processes having a nonzero first statistical
moment may be generated by the addition of a determiristic function to the
random process generated by one of the procedures described in this technical
note. The ocutput of the analog computer network derived by each of the proce-
dures is a bime-parameter Gaussian random process having first and second
statistical moments approximating the moments of the original time/position-
parameter random process,

The two synthesis procedures will be designated in this techrical note
as the "covariance-expansion method" and as the "spectral-density method." The
covariance-expansion method is a direct adaptation of the synthesis method
for the realization of time-parameter random processes that was presented in
Technical Note No. 3 on this project (Reference 8) and further developed in
the thesis of Reference 9. The spectral-density method is a direct adaptation
of the synthesis method for the realization of position-parameter random pro-
cesses that was presented in Technical Note No. 10 {(Reference 3).

One method of ottaining experimental wind data utilizes a tracking
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radar to record the effects of wind disburbance on the motion of an ascend-
ing Jimsphere balloon (Reference 7). This data may be used for the calcula-
tion of a covariance function that depénds on altitude alone. Data in this
form is best suited for use with the ceovariance-expansion synthesis procedure
discussed in Chapter II of this technical note. The mechanization system
derived by use of data in this form is best suited to simulate the wind dis-
turbances that affect & vehicle in nearly vertical flight. However, the syn-
thesis procedure of Chapter II is not at all restricted for use in vertical
flight patterns., It is of greater generality than the method of Chapter III.
At the same time, unforbunately, it is of greater mathematical complexity,
and in general requires a greater amount of statistical data for implementa-
tilon.

A second method of obtaining experimental wind data involves the re-
cording of wind effects on a senscr maintained at fixed altitude (Reference
6). This data may be used to calculate a power spectral density function if
it is assumed that the wind disturbance at a fixed altitude may be represented
as a stationary random process. Data expressed in this form, for a succession
of altitudes, is best suited for use with the spectral-density synthesis pro-
cedure discussed in Chapter III of this technical note. The mechanization
system derived by use of data in this form is best suited to simulate the
wird disturbances that affect a vehicle in nearly horizontal flight, It is
tc be noted that even though the wind disturbance is assumed to be a stationary
random process depending on time for each fixed altitude, the process may be
nonstationary in the altitude parameter.

Unlike the procedure of Chapter III, the covariance-expansion synthesis
method of Chapter IT makes no assumption of stationarity. The random process
to be approximated may be nonstationary in both time and position parameters.

Chapter II of this technical note is devoted to a presentation of the
covariance-expansion synthesis preocedure., A simple example is worked to
clarify the procedure. Chapter III is devoted to a presentation of the
spectral-density synthesis procedure. An example is also worked in that
chapter to demonstrate application of the procedure. Chapter IV contains a
discussion of conclusions derived on the basis of the research work done %o

date and contains some comments concerning future plans for the research.



IT. THE COVARIANCE-EXPANSION SYNTHESIS PROCEDURE

2~-1, Introduction

This chapter is devoted to a presentation of the covariance-expansion
synthesis procedure. The output of the analog computer network derived by
this procedure approximates a random process g(z,t) depending on position z
and time t. Specifically, the output of the network approximates the com-
posite random process x(t) = g(z(t),t). The process x(t) represents the
effect of the original time/position random process on & sensing element hav-
ing the position z at the time instant t. The representation is exact pro-
vided the random process is Gaussian, has a covariance expansion of the form
of (2.2), and provided the position variable z is a monotone function of time.

vherwise, the output of the analog computer network is an approximation to
the original random process.

The notation used in this technical note has been chcsen to conform
to that used in Technical Note No. 3 (Reference 8). The synthesis procedure
presented in this chapter is a direct adaptation of the procedure in Technical
Note No. 3. In order to save space, those details cf proof of wvalidity of
the procedure that appear in Tachnical Note No. 3 are rnct repeated here. Only
those steps are included that are necessary to demonstrate implementation.of

the synthesis method.

2=2, The Synthesis Procedure

The time/position-parameter random process to be approximated is de-
noted as g(z,t). Here, z is a variable denobting the instantaneous position
at time t of a sensing element that is affected by the random process.

The covariance function for the random process g(z,t) is denoted as
rg(z',tl,z,,t) =B [g(zlitl)g(zgﬁtz)] (2"1)
where E is the expectation operation and

z" = larger of (zl and 22)

03
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smaller of (z, and zz)
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larger of (tl and t2)
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smaller of (tl and tg)

Here it is assumed that the expected value of g(z,t) is identically zero. Pro-
cesses with nonzero mean may be generated by the addition of g(z,t) to a
deterministic function,

It is assumed that the covariance function of the random process

g(zgt) may be expressed as a finite series expansion in the form

. - n - -
rg(z*5 £, z, t) = ZthEfz’, ") 85(z, t) (2.2)
i=l

where TEKZ!B t[) and ei(z, t) are known functions of time and positipno
If eqguation (2.2) does not apply exactly, the covariance function rg(zL,,t[,
z, t) must be approximated by an expansion of this form,

It is recalied that the pcsition variable z denotes the instantaneous
position at time t of a sensing element that is affected by the random pro-
cess g(z, t). Throughout this technical note it will be assumed that the
position of the sensing element is described by a nondecreasing function of
time z(t). However, the synthesis procedure developed is equally valid if
the position is described by & nonincreasing function of time,

An analog computer network is to be synthesized having two inputs--a
Gaussian white-noise waveform, and the function z(t) representing the instan-.
taneous position of a sensing element. The output of the network is to be a

composite random process

x(t) = g(z(t), t) (2.3)

The composite time-parameter random process x(t) represents the effect of the
time/position-parameter random process g(z,t) on the sensing element having
the instantaneous position z(t).

The covariance function of ‘the random process x(t) is denoted as

7

r(t", t). By use of (2.3) and (2.1) this may be expressed as



r(tj, t) = E [x(tl)x(tg)] = :rg(z(tJ)s t%, 2(%), t) (2.5)

By use of (2.2) the covariance function r(t”, t) may be represented as a

finite series expansion

r(t”, £) =) 8, (6") v, (%) (2.5)
i=l

where

il

2, (") = M (2(t"), £)

yi(t) eiﬁz(t)ﬁ t)

The analog computer network to be synthesized is characterized by the nth

order differential equation

™ ep ) P o ) 1 g (6) x

(a-1)

(1)

=q ,(t)y + oo+ g ()T + g (B)y (2.6)

(k)

In shorter notation, (2.6) may be written as

Here x denotes the kth derivative of the function x with respect to time.

— ~ /
Lt X = Nt v (2.7)

The function y represents the Gaussian white-noise input to the anslog compub-
er network.

In order to avold differentiation of the nolise input y, the equation
of (2.7) may be converted into a set of n first-order differential equations.

To make this conversion the following identificaticns are utilized:

x(t)

xl(t) (2.8)

ed
1

X, - an_l(t) X, 4 bnal(t) y



This set can be written more concisely in mabtrix notation as

where

1%

A(%)

ed
2

L)

SRR S al(t) X, + bl(t) v

(1)
n

=M S a() x+ B ¥
(x] =1[x] =8x
_-._Xl o
%o
) B(%)
X:n-l
Xn

- ao(t) X, + bo(t) v

O
(@)

(@)
(@]

=%y an—2(t) X, + bn_g(t) v

(2.9)



The elements 8y bk in (2.8) are related to the coefficients Do G

in (2.6) by
n-l-k
= (n-1-3) 1t a(n=1-j-k)
pk._'Ej Kt (n-1-j-K) | el (2.10)
J=0
n-l-k
- ) p(n-1-J-k) .
N Ef (0-1-j) : “onel-j (2.11)

o k! (n-1=j-k)

5

If the p,, 9, are shown, then (2.,10) and (2.11) can be solved se-
quentially for the ak, bko

Associated with the vector differential equation of (2.9) is the homo-

geneous equation

1
E(“) = A(t) x (2.12)
The ¢l(t), ¢2(t), . o ¢n(t) of (2.5), which are taken to be linearly inderen-

dent, may be used in the construction of a fundamental matrix solution.

8(t) satisfying

d 2
a5 2(t) =A%) 8(t) (2.13)

The matrix &(t) is defined as

pe— st

P17 P07 ¢ - Py

Pio Pos o o P

I )
In "2n nn
| _




where

d

13 =3 %i5-1 F Pnoge1 Pin (2.15)

o
1

and

1l

¢k(t> {k =1, 2, ° - n}

dk(Z(t), t)

It is noted that the chain rule is to be used in the differentiation

of ¢k(t)°

d _a
e ¢k(t) =T ak(z(t), t) (2.16)
%% %
T ot dz dt

The nonhomogeneous differential equation of (2.9) with zero initial

conditions has the unique solution

t
x(8) = | 8() 73e) B(s) y(e) as (2.17)

¢]

where é_l(s) is the matrix inverse of &(t).

A covarilance matrix for the vector §(t) can be written as

R(t", t)

]

5[ x(t,) () ] (2.18)

t
T
f 8(t’) 8 3(s) B(s) B (s) (@'1(;\:)] 37 () ds

where superscri@t T denotes matrix transpose.
The coefficients a,, b, of (2.8) will now be determined. Associated
with the differential equation of (2.7) is the homogeneous differential equa-

tion



Lt(x) =0 (2.19)

The linear differential operator L

(2.5) by the relation

t can be specified in terms of the ¢k of

Lt x = W(x, ¢l’ ¢29 vy @ ) =0 (2.20)

where the Wronskian W 1s given by

W(x, ¢l’ ¢2; c vy 0 ) o . . (2.21)

The coefficients can be obtained using equation (2.20). The elements

P
a, that appear in (2.8) aid in the matrix A of (2.9) can be obtained directly
by using (2.10).

The elements bk of (2.8) and (2.9) now must be determined. Once the
8y are determined by the procedure described above, the matrix §(t) can ve
written using equation (2.15). The matrix covariance expression of (2.18)
can be written in the form

/

R(t%, £) = 8(t°) D(t) & () (2.22)

where the elements di.(t) of the matrix D(t) may be expressed in terms of
the ¢i(t) and yi(t) of (2.5) in the form

a, . (t) = Y3 (®) i=j (2.23)
13 ;%) .
=0 iF

The determination of the elements of the matrices §(t) and D(t) allows the
determination of the elements of R(t', t) by use of (2.22).



*
A matrix R (t', t) is now defined as

T 7
R (t, t) (2.2L)

’

*
R (t, t)

]

Y2 T yi
8(t) D(t7) @ (&)
Tet A(t', t) be defined as
At , ) =R(t", t) - R*(t', t) (2.25)

Finally, let 6ii be the diagonal elements of the matrix

3G, b) (2.26)
ot
7
t =t
+ can be shown that
noi T 8450 11,2, 0 ¢, (2.27)

The matrix B(t) is now~specified5 thus completing the synthesis procedure,
The mechanization system that generates the random process x(t) is character-
ized by the set of differential equations in (2.8). A block diagram of the
mechanization system 1s shown in Figure 2.1.

It is important to achieve the proper integrator initial conditions at
the beginning of a computation cycle (t = 0) if the output of the mechaniza-
tion system is to realize the correct covariance function. Different initial
conditions applied to the same mechanization system with the same position-
function excitation may give rise to widely divergent covariance functions.
In general, the initial conditions may be altered by manipulation of the white-
noise input and the position-parameter z(t) input during resetting of the

anaiog computer just prior to t = 0,

2-3. An Example

A mumerical example is presented in this section to help clarify the
covariance-expansion synthesis procedure.

The covariance function for the random process g(z, t) is assumed to be

10
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’

, o - wz’ - B(t - t)
rg(z s, b, 2z, %) =c e e (2.28)

The coefficients in (2.2) are seen from the above to be

o -z’ -t .
ﬂl(z’, t)=ce e (2.29)

i
2]
(]

In a similar manner, the coefficients in (2.5) are seen to be

- az(t’) - B’

,(t") =ce (2.30)

Bt
vy(8) =ce

The p, coefficients of (2.6) are determined by use of the relation in (2.20):

* ne 0 (2.31)

I%(x) = =
CV

Expanding this determinant with the use of (2.30), there results
(1) °
x(l) + (B +oz (8)) x =0 (2.32)

A comparison of (2.32) and (2.6) shows that
p (8) =8 + aztM)(5) (2.33)

Utilization of (2.10) provides the single coefficient of the A(t) matrix of
(2.9):

12



The single

and (2.30):

The
of (2.23):

and (2.36):

A7, t)

]

a ()

p (t)

B+ az(l)(t)

(2.34)

coefficient of the &(t) matrix of (2.14) is found by use of (2.15)

- az(t) - Bt

b1y = ¢, (t) =ce

(2.35)

single coefficient of the D(t) matrix of (2,22) is found by use

3 v, ()

RER I € B

az(t) + 2Bt

(2.36)

single element matrix R(t", t) of (2.22) is found by use of (2.35)

R(t%, t)

T

3(t") D(t) & (t)

, - oz(t?) - Bt* Bt
[; e e e ?

.
matrix R (t°, t) of (2.24) is

difference matrix of (2.

R(t’, t) - R (£, t)

[02 e - en(t)

- Bt

e

(&", t)

e

25) is

T

R (¢, t7)

, -oaz(t) -8t Bt
=[C e e e ]

13
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The matrix of (2.26) is found by use of (2.39):

& A, ©) ' = [6,,] (2.40)

5 = oz(t) ( (1) )

-c e 28 + az (%)

Finally, the single coefficient in the B(t) matrix of (2.9) is found
by use of (2.27) and (2.L40):

b = - 611

- az{t)/2
=c e = (t)/ J26+az(l)(t)

Specification of this coefficient completes the synthesis procedure.
The differential equation characterizing the mechanization system for the
realization of the random process x(t) = g(z(t), t) is obtained by substitu-
tion of the coefficients of (2.34%) and (2.41) in the system of (2.8):

gi(t) = - a_(t) x(t) +b_(t) y(t) (2.42)

- az(t)/2 ~
=_<B+oz9%§c—)->x(t)+ce ¥ /J25+0!%%—)' y(t)

A block diagram of the mechanization system that implements the differential

equation (2.42) is shown in Figure 2.2.

1h
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117, THE SPECTRAL-DENSITY SYNTHESIS PROCEDURE

3-1. Introduction

This chapter is devoted to a presentation of the spectral-density syn-
thezis procedure. The output of the analog computer network derived by this
procedure approximates a random process g(z, t) depending on position z and
time t. ©Specifically, the output of the network approximates the composite
random process x(t) = g(z(t), t). The process x(t) represents the effect of
the original time/position-parameter random process on a sensing element
kaving the position z at the instant t. The representation is exact for each
fixed position z provided the original random process is stationary in time
for that position and has power spectral density in the form of equation (3.1)
below. Otherwise, the output of the analog computer network is an approxima-
tion to the original process. The approximation is best when z is a slowly

varying function of time.

3+2, The Synthesis Procedure

Tﬁe time/position-parameter random process to be approximated is de-
noted as g(z,t). Here, z is a variable denoting the instantaneous position
at time t of a sensing element that is affected by the random process.

It is assumed that the expected value of g(z, t) is identically zero.
Processes with nonzero mean may be generated by the addition of g(z, t) to a
deterministic function,

At any fixed position z, it is assumed that the random process g(z, t)
is wide-sense stationary in the time .parameter t. The power spectral density
at the position z is denoted as SZ(w). It is assumed that this power spectral
density may be expressed as a ratio of polynomials in w.

2n-2 2
C2n-2(z) ) + oo e+ cz(z) W+ co(z)

Sz(w) =

(3.1)
a, (2) o ..+ a,(z) 0 + a_(z)

The ¢ and d coefficients of wk are functions of position z. If equation (3.1)
does not apply exactly, the power spectral density must be approximated by an
expression of this form.

The power spectral density of (3.1) may be expressed as follows (see

16



Reference 1, page 227):
2
Sz(w) = Hé(s) (3.2)

g = Jjw

Here, Hi(s) is the transfer function of a time-invariant linea? filter.
Physically, for any fixed position z the application of a white-noise random
process to the input of a filter having transfer function HZ(S) produces at
the output a random process x(t) having power spectral density Sz(w)a

The transfer function Hz(s) may be expressed as a ratio of two poly-

nomials in complex frequency s.

n-1 o o
bn_l(z)s + + bl(z)s + bo(z)

. (3.3)
st o+ e o +a(z)s + ao(z)

The ak\and bk coefficients of sk are functions of position z. A technigue
for determining these coefficients if Sz(w) is known, is given on page 233 of
Reference 1,

The transfer function HZ(S) of (3.3) may be realized in a varieby of
ways by the use of analog computer components (see References 4 and 5).

In particular, this transfer function may be realized for any fixed z

by a mechanization of the differential eguatiocn

n

dx ax N
=+ + al(z) = ao(z) x (3.4)
dt
n-1
= d y ° o -d-;"y-: 7,
= bﬁ_l(z) dtn°1 + + bl(z) = + bo(a) v

Here, y represents the white-noise random process that is applied as input
to the mechanization system. The output of the mecharization system 1s the
random process x(t) = g(z, t) for the particular fixed wvalue of position z
previously selected,

A method of mechanizing the transfer function of (3.3) for fixed posi-

tion z that avoids differentiation of the white-folse imput y may be obtained

17



by converting the differential equation of (3.4) to a set of first-order
differential equations equivalent to (3.4) for any fixed value of z (see

Reference 8, page 8):

= x (3.5)

]

T =% - (B X vb L (2) Y

T X3 - ap_2(z) X, + bn_z(z) v

-}

Il

—5F— = %X, - al(z) X, + bl(z) v

dx,)
5 = - ao(z) X, + bo(z) v

1

As was discussed previously, a mechanization of the set of eguations
in (3.5) provides an exact realization of the random process x(t) = g(z, t)
for any fixed value of position z. It might therefore be expected that the
mechanization of this set of equations for variable z provides an approximate
realization of the composite random process x(t) = g(z(t), t) when the para-
meter z is allowed to become a slowly-varying function of time z(t). An
analog compuber network that mechanizes the set of equations in (3.5) when
the position parameter is described by a function of time z(t) is shown in
Figure 3.1.

It is again important to achieve the proper integrator initial condi-
tions at the beginning of a computation cycle (t = 0) if the output of the
mechanization system is to realize the correct random process. This is rela-
tively straightforward to accomplish with this mechanization system. The
white-noise input y(t) is applied to the network at all times. During the
reset operation of the analog computer just prior to t = 0, the position-
parameter input z(t) is maintained constant at its desired initial value

long enough for the output random process x(t) to become stationary in time.
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3~3. An Example

A numerical example is presented in this section to help clarify the
spectral-density synthesis procedure.

It is assumed that the random process g(z, t) is wide-sense stationary
in the time parameter t at each fixed position z. It is assumed that the
power spectral density of the equivalent time-parameter process x(t) for

each fixed z is given by the expression

s (w) = 2B (3.6)
w + B8

It is noted that not enough informetion is contained in this character-
ization to specify the covariance function for the random process g(z, t)
uniguely. One possible covariance function consistent with (3.6) is

- oz’ - Bt - %)
, Z, t) = ® e e (3.7)

4 ’
r (2 t
g( ?

This is identical to the covariance function of (2.28) used in the numerical
example of Section 3-2,  Another of the infinite number of covariance functions

consistent with (3.6) is

5 - 20z’ + oz - B(t" - 1)
rg(z', t', z, t) =c" e e (3.8)

By use of (3.2) and (3.6) the transfer function Hé(s) of (3.3) is

determined to be

_ -oazf2
B (s) = S8 (3.9)

s+ 8

Finally, a comparison of the expression in (3.6) termwise with the

expression in (3.3) shows that
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- az/2 .
c 2B e (3.10)

b (z) =

bl(z) =0
a (z) =8
al(z) = 1

Specification of these coefficients completes the synthesis procedure.
The differential equation characterizing the mechanization system for the
example of this section is cbtained by substitution of the coefficients of

(3.10) in the system of (3.5)

- azl{t)/2
9x(t) _ g () + c BB e )/ y(t) (3.11)

dt

A mechanization system for generation of the random process x(t) is
shown in Figure 3.2. This system provides an exact realization of the random
process characterized by the power spectral density of (3.6) for every fixed
valoue of the poéition parameter z. The system is expected to provide a good
approximation to the original random process for slowly varying functions of
position z(t).

As has been indicated previously, specification of the power spectral
density function is not sufficient to characterize the original time/positionm
parameter random process uniquely. Thus, further statistical information
must be known in order to determine constraints that must be present on the
position variable z(t) to provide good approximation. If it is assumed that
the covariance function to be approximated is given by (3.7), then a compari-
son of the coefficients of the differential equations in (2.42) and in (3.11)
shows that the foilowing constraint must be imposed on z(t) for good approxi-

mation:

l dz(t)

B
— < £ (3.12)
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The solution to the differential equation of (2.42) provides an exact reali-

zation of the given covariance function. If the constraint of (3.12) on z(t)

is imposed, then the coefficient (and thus the solution) of the equation of
(3.11) characterizing the approximation are closely equal to the coefficients
(and hence the solution) of the exact equation of (2.42),
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Iv. CONCLUSIONS

In this technical note two methods have been presented for the syn-
thesis of an analog computer network whose output approximates a random pro-
cess depending on both time and a position parameter. The covariance-expan-
sion synthesis method is the more general of the two methods. It involves
no restriction on the rate of change of the position parameter z(t) and no
assumption of stationarity in time for a fixed position, whereas both of
these restrictions are present with the  spec¥ral-density synthesis procedure.

On the other hand, the covariance-expansion method is mathematically
more complex than the spectral-density method. It requires a larger number
of computer elements for implementation than the spectral-density method.
Further, it requires a more extensive specification of the statistical pro-
perties of the random process being simulated than does the spectral-density
method, Unlike the spectral-density method, the covariance-expansion pro-
cedure requires the generation of derivatives of various orders for the posi-
tion variable z(t). These derivatives may or may not be readily available as
a portion of the analog compuber solution of the overall simulation problem
beling studied.

A Gaussian white-noise random process is one of the inputs for the net-
work derived by either.synthesis procedure, In neither case is a differentia-
tion of the white-noise waveform required.

The great advantage of the synthesis techniques presented in this
technical note over those previously investigated is that only a single net-
work need be synthesized for use with a wide range of vehicle trajectories.
This 1s a factor of importance because of the considerable mathematical and
physical complexity encountered in synthesizing a network to generate a pre-
scribed nonstationary random process., In some simvlation problems, such as
a trajectory optimization problem, the trajectory varies from one computer run
to another. In a problem of this type it would ordinarily not be feasible to
construct a different random. process generator for each different trajectory.

In general, it is felt that the covariance-expansion synthesis procedure
is to be preferred over the spectral-density synthesis procedure. The result-
ing network can always be simplified by eliminating appropriate terms in the
differential equations characterizing the network., Use of the spectral-density

method seems to be indicated primerily if wind data is presented in terms of

ol



the power spectral density function at a succession of altitudes.

The two examples presented in this technical note were selected to
illustrate the basic procedures involved in each synthesis method. These
examples are not intended to be of practical importance. In the near future,
experimental wind data will be utilized in an application of one of the pro-
cedures to the synthesis of an analog computer network for the simulation of

random wind disturbances.
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